Spin foams with timelike surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Timelike Surfaces with Harmonic Inverse Mean Curvature

In classical differential geometry, surfaces of constant mean curvature (CMC surfaces) have been studied extensively [1]. As a generalization of CMC surfaces, Bobenko [2] introduced the notion of surface with harmonic inverse mean curvature (HIMC surface). He showed that HIMC surfaces admit Lax representation with variable spectral parameter. In [5], Bobenko, Eitner and Kitaev showed that the G...

متن کامل

Timelike Constant Mean Curvature Surfaces with Singularities

We use integrable systems techniques to study the singularities of timelike non-minimal constant mean curvature (CMC) surfaces in the LorentzMinkowski 3-space. The singularities arise at the boundary of the Birkhoff big cell of the loop group involved. We examine the behaviour of the surfaces at the big cell boundary, generalize the definition of CMC surfaces to include those with finite, gener...

متن کامل

On the Regularity of Timelike Extremal Surfaces

We study a class of timelike weakly extremal surfaces in flat Minkowski space R, characterized by the fact that they admit a C parametrization (in general not an immersion) of a specific form. We prove that if the distinguished parametrization is of class C, then the surface is regularly immersed away from a closed singular set of euclidean Hausdorff dimension at most 1 + 1/k, and that this bou...

متن کامل

Timelike surfaces in Lorentz covariant loop gravity and spin foam models

We construct a canonical formulation of general relativity for the case of a timelike foliation of spacetime. The formulation possesses explicit covariance with respect to Lorentz transformations in the tangent space. Applying the loop approach to quantize the theory we derive the spectrum of the area operator of a two-dimensional surface. Its different branches are naturally associated to spac...

متن کامل

On timelike surfaces in Lorentzian manifolds

We discuss the geometry of timelike surfaces (two-dimensional submanifolds) in a Lorentzian manifold and its interpretation in terms of general relativity. A classification of such surfaces is presented which distinguishes four cases of special algebraic properties of the second fundamental form from the generic case. In the physical interpretation a timelike surface Σ can be viewed as the worl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Classical and Quantum Gravity

سال: 2010

ISSN: 0264-9381,1361-6382

DOI: 10.1088/0264-9381/27/15/155014